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Demographic noise causes unlimited population growth in a broad class of models which, without noise,
would predict a stable finite population. We study this effect on the example of a stochastic birth-death model
which includes immigration, binary reproduction, and death. The unlimited population growth proceeds as an
exponentially slow decay of a metastable probability distribution �MPD� of the population. We develop a
systematic WKB theory, complemented by the van Kampen system size expansion, for the MPD and for the
decay time. Important signatures of the MPD are a power-law tail �such that all the distribution moments,
except the zeroth one, diverge� and the presence in the solution of two different WKB modes.
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Since the celebrated essay of Malthus �1�, quantitative
modeling of population dynamics has attracted much inter-
est. To a large extent, this interest is powered by the danger
of a Malthusian catastrophe, when too a rapid population
growth causes a fatal lack of resources. Here we focus on a
variant of the Malthusian catastrophe by considering not too
a large population that undergoes binary reproduction, immi-
gration, and death. Although macroscopically stable, this
population can be pushed to the Malthusian limit �a critical
population size that sparks a Malthusian catastrophe� by rare
large fluctuations. We show that unlimited population growth
proceeds as a slow decay of a metastable probability distri-
bution �MPD� of the population. We determine the MPD and
the decay time analytically by developing a systematic
Wentzel-Kramers-Brillouin �WKB� theory for the master
equation and combining it with the van Kampen system size
expansion. We show that the MPD is described by two dif-
ferent WKB modes which are strongly coupled in a narrow
region around the unstable fixed point of the deterministic
rate equation of the model. At large population sizes the
MPD exhibits a power-law tail so that all the distribution
moments, except the zeroth one, diverge.

At the deterministic level of modeling a Malthusian catas-
trophe does not occur if the gain and loss processes balance
each other so that the resulting steady-state population size is
stable with respect to small perturbations. Real populations,
however, behave stochastically, rather than deterministically
�2�. The stochasticity may cause an unlimited population
growth in a broad class of models the deterministic counter-
parts of which predict a stable finite population size. We will
investigate this remarkable phenomenon on the example of a
birth-death model �3� which accounts for binary reproduction

2A→
�

3A, immigration Ø→
�

A, and death A→
�

Ø. The rate
equation for this model is

ṅ̄ = � − �n̄ + ��/2�n̄2, �1�

where n̄�t��1 is the average population size. For a relatively
low death rate �2�2��, Eq. �1� does not have fixed points
and the population size blows up in finite time for any n̄�t
=0�. For �2�2��, Eq. �1� has two fixed points n1=��1
−	� and n2=��1+	�, where �=� /��1 and 	2=1

−2�� /�2. When starting from any n̄�t=0��n2, the popula-
tion size flows to the attracting fixed point n̄=n1 with a char-
acteristic relaxation time 
r=1 / ��	� and stays there forever.

The demographic noise, ignored by the rate equation �1�,
is accounted for by the master equation �see, e.g., Ref. �4��,
which governs the evolution of probability Pn�t� to have n
individuals at time t:

Ṗn = �n−1Pn−1 − ��n + �n�Pn + �n+1Pn+1, �2�

where �n= �� /2�n�n−1�+� and �n=�n. One striking prop-
erty of Eq. �2� concerns its steady state. Summing up the first
n equations in Eq. �2�, we obtain

d

dt
�
l=0

n

Pl�t� = −
n�n − 1�

2�
Pn + �n + 1�Pn+1 −

��

2
Pn, �3�

where �=1−	2=2�� /�2, and the time is rescaled by the
death rate: �t→ t. Putting d /dt=0, we obtain

Pn+1 =
n�n − 1� + ��2

2��n + 1�
Pn. �4�

Clearly, limn→�Pn=� unless Pn=0, n=0,1 ,2 , . . .. Therefore,
the ultimate state of the stochastic process corresponds to an
empty system, in a stark contrast to the prediction of the
rate equation �1�. At the same time, there is a separate
absorbing state at infinity which “collects” the individuals
and ultimately becomes fully populated, as its probability
P��t→��=1. Here is an overview of how the unlimited
population growth occurs. At t
r, the MPD sets in, peaked
at the attracting fixed point n=n1. We will assume �and check
a posteriori� that the width of the MPD here is much less
than the distance n2−n1 between the two fixed points of the
rate equation. In this regime a large fluctuation is needed to
bring the population beyond the unstable fixed point n=n2 of
the rate equation, from where it rapidly escapes to infinity.
As large fluctuations occur with certainty, a full transfer of
the population to infinity is certain. At t�
r �in the physical
units�, Pn�t� decays as Pn�t��C�n exp�−t /
�, whereas P��t�
grows as P��t��1−C exp�−t /
�. Here �n is the quasista-
tionary probability distribution �QSD; it is normalized to
unity� and C is a constant depending on the initial condition:
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for “macroscopic” initial conditions C�1. As in other in-
stances of weak-noise-driven escape from a metastable state
�4�, the decay time 
 turns out to be exponentially long com-
pared to the relaxation time 
r.

The QSD �n and the decay time 
 are determined by the
eigenvalue problem

− E�n =
1

2�
��n − 1��n − 2��n−1 − n�n − 1��n�

+ ��n + 1��n+1 − n�n� +
��

2
��n−1 − �n� , �5�

where E= ��
�−1�0 is the rescaled eigenvalue, and we are
interested in the eigenmode with the smallest E. We will
exploit the large parameter ��1 and solve the eigenvalue
problem analytically by combining a systematic WKB ex-
pansion �5� with the van Kampen system size expansion �4�.

The WKB analysis of the master equation �5�, which we
develop here, extends the existing approaches �3,5–7�, as it
accounts for two different WKB modes and for mode-
coupling effects; see below. The WKB ansatz is

�n = a�n�e−S�n�, �6�

where, for n�1, we can treat the action S�n� and amplitude
a�n� as continuous functions of n. As can be checked a pos-
teriori, the order of terms is the following: S�n�=O���,
a�n�=O�1�, S��n�=O�1�, a��n�=O�1 /��, S��n�=O�1 /��,
a��n�=O�1 /�2�, etc. Here and in the following the primes
stand for n-derivatives. Therefore, we can approximate

�n�1 � �ne�S��1 −
S�

2
�

a�

a
� . �7�

Now we substitute Eqs. �6� and �7� into Eq. �5�. As E turns
out to be exponentially small in 1 /�, we must put E=0 in all
WKB orders. In the leading order we obtain the eikonal
equation H�n , p�=0, which describes the zero-energy trajec-
tories of the time-independent Hamiltonian

H�n,p� = �ep − 1�� n2

2�
− ne−p +

��

2
� . �8�

Here n is the coordinate and p	S� is the momentum �8�.
The zero-energy lines

p = ps = 0 and p = pf = − ln� n

2�
+

��

2n
� �9�

describe the slow and fast �as functions of n� WKB modes,
respectively. For the slow mode the action S=0. One can
check that the corresponding Hamilton equation for n coin-
cides with the rate equation �1�. The fast mode corresponds
to the instanton: a heteroclinic orbit of the Hamiltonian �8�
which exits the saddle point �n1 ,0� and enters the saddle
point �n2 ,0� of the phase plane �n , p�; see Fig. 1. In analogy
with other problems of noise-driven escape �6,9�, this instan-
ton describes the most probable escape path: in this case to
infinity. The action S�n�=
npf�n��dn� along the instanton is

S�n� = n − 2��� arctan
n

���
− n ln� n

2�
+

��

2n
� , �10�

where the integration constant can be put to zero. Note that
the saddle points �n1 ,0� and �n2 ,0� of the Hamiltonian �8�
are mode-crossing points, as pf = ps=0 there.

In the subleading order of the WKB expansion we obtain
a first-order equation for the amplitude a�n�:

�a2�n2ep − 2n�e−p + ��2ep��� = 2��e−p − 2nep + n�a2.

�11�

For the fast mode we find, after some algebra,

af�n� =
Af

�n�n2 + ��2�
, �12�

where Af =const. Therefore, the fast WKB mode is well-
behaved at n=n1 and n=n2. For the slow mode Eq. �11�
yields

as�n� =
As

�n − n1��n − n2�
, �13�

where As=const. The slow-mode solution diverges at each of
the two mode-crossing points implying breakdown of the
WKB approximation there. To understand the mechanism of
breakdown, we notice that it occurs in the regions of small
p	S�— that is, a slow variation of S�n� and, therefore, of
�n. Here we can use the �stationary� Fokker-Planck equation
which follows from the van Kampen system size expansion
�4� applied to Eq. �5� with E=0 �10�:

��n − n1��n2 − n��n�� + �1

2
��n + ��2 − 	2�2��n�

= 0.

�14�

The first and second terms describe drift and diffusion, re-
spectively. The mechanism of breakdown of WKB becomes
clear once we observe that the slow-mode solution �n
=as�n�, as described by Eq. �13�, solves Eq. �14� with the
diffusion term neglected. As we will see shortly, an account
of the small diffusion term regularizes the singularity. This
regularization is needed only in a narrow boundary layer
around the mode-crossing point n=n2. Indeed, at 1�n�n2
the slow-mode solution is merely an exponentially small cor-

0 0.5 1 1.5 2 2.5
n/Ω

-0.5

0

0.5

p

n1 n2

FIG. 1. �Color online�. The zero-energy trajectories �9� on the
phase plane �n , p� for �=1 /2. The thick line indicates the WKB
modes contributing to the QSD.
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rection to the fast-mode solution, and so it should be dis-
carded there. The situation is different at nn2. Here the
fast-mode solution af�n�e−S�n� should be discarded, as it di-
verges as n→�, whereas the slow mode yields the correct
solution. The slow and fast modes are strongly coupled in the
boundary layer around n=n2, and this coupling is described
by the boundary-layer solution which we will now obtain.

Consider the stationary Fokker-Planck equation �14� in
the vicinity of the mode-crossing point n=n2: �n−n2��n2.
Here we can put n−n1�n2−n1 in the drift term and n�n2 in
the diffusion term. Integrating the equation once, we obtain

d��x�/dx − 2x��x� = − C1, �15�

where x= �n−n2� / l2, l2= �2��1 /	+1��1/2 is the characteristic
width of the boundary layer, and C1�0 is a constant. The
general solution of Eq. �15� is ��x�=C1��x�+C2ex2

, where
��x�=ex2


x
�e−�2

d�, and C2 is another constant which, as we
will see shortly, must be put to zero. The function ��x� has
the following asymptotes at �x��1:

��x� = ��2x�−1 + O�x−3� , x � 1,

��ex2
+ O��x�−1� , x � 0,− x � 1. �16�

We start the matching procedure from the region of n�n2,
where the solution can only include the slow mode �13� with
a yet unknown normalization constant As. Consider the re-
gion 0�n−n2�n2. In the leading order, Eq. �13� yields �n
=as�n��As / �2�	�n−n2��. Matching this asymptote with the
boundary-layer solution ��x� in their joint region of validity,
l2�n−n2�n2, we obtain C1=As��l2	�−1 and C2=0. Having
found C1, we have determined, up to As, the boundary-layer
solution ��x�. Now we match this solution with the fast-
mode WKB solution af�n�e−S�n� in their joint region of valid-
ity, l2�n2−n�n2. To this end we expand S�n� from Eq. �10�
around n=n2 up to �n−n2�2 and evaluate af�n�, given by Eq.
�12�, at n=n2. The matching yields

Af = As�2�/	�1/2��1 + 	�eS�n2� �17�

and determines, up to As, the complete WKB solution at 1
�n�n2.

The WKB approximation breaks down at n=O�1�. To find
the QSD in this region we return to Eq. �5� and notice that, at
n���, �n grows rapidly with n, so that �n−1��n. The
leading-order terms here are the following: �n+1��n+1
− ��� /2��n�0. That is, immigration and death balance each
other and dominate over the reproduction. The resulting re-
cursion relation yields a Poisson distribution

�n =
�0

n!
���

2
�n

. �18�

To determine the unknown constant �0 we can match the
asymptote �18� with the asymptote of the WKB solution,
af�n�e−S�n�, at 1�n���. To this end we expand the action
S�n� at n���: S�n��−n+n ln�2n / �����. On the other
hand, at n�1 we can use Stirling’s formula n!
��2�n�n /e�n in Eq. �18�. The matching yields

�0 =
2�Ase

S�n2�

�	1/2�1 − 	�
. �19�

By now we have found, up to the normalization constant As,
the QSD for all n. The normalization, in the leading order, is
determined by the region of �n−n1��n1, where the fast-mode
solution �n=af�n�e−S�n� is approximately Gaussian:

�n �
��As�1 + 	�e��s

�2�3/2	1/2�1 − 	�3/2 exp�− �n − n1�2

l1
2 � . �20�

Here we have denoted l1= �2��1 /	−1��1/2 and

�s�	� = �S�n2� − S�n1��/� = 2	 − 2�1 − 	2

��arctan�1 + 	

1 − 	
− arctan�1 − 	

1 + 	
� . �21�

Normalizing the Gaussian �20� to unity, we obtain

As =
�	�1 − 	�
��1 + 	�

e−��s, �22�

which completes our calculation of �n for all n. Figure 2
shows the resulting QSD for �=100 and �=1 /2.

Having found the QSD we can calculate the decay time 
.
We return to Eq. �5� and sum it up over n from zero to
infinity. By virtue of Eq. �13�, the first term on the right tends
to As / �2��, while the rest of the terms tend to zero. We
obtain

E�
n=0

�

�n = E =
As

2�
=

	�1 − 	�
2��1 + 	�

e−��s, �23�

which is exponentially small as long as ��s�1. The decay
time, in physical units, is therefore


 =
1

�E
=

2��1 + 	�
�	�1 − 	�

e��s. �24�

�s is monotone increasing with 	; its asymptotes are
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FIG. 2. �Color online�. QSD for �=100 and �=1 /2. The QSD
includes four overlapping asymptotes: the fast mode �1�, the slow
mode �2�, the boundary layer �3�, and the Poisson distribution �18�
�triangles�. The small mismatch between the curves is due to
higher-order corrections. We found numerically that the mismatch
goes down as ��−1/2 at large �.
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�s = ��2/3�	3 + �4/15�	5 + ¯ , 	 � 1,

2 − ��2�1 − 	� + ¯ , 1 − 	 � 1.


The exponent e��s in Eq. �24� coincides with that obtained
by Elgart and Kamenev �3� who only considered the leading
order of �a different version of� WKB theory. Our result �24�
goes beyond the leading order and includes a preexponent.
The preexponent diverges as 	→1 �when the immigration is
stopped�, so the decay time 
 diverges. This result could not
have been predicted in the leading order of WKB theory �3�.

The assumptions made in the process of derivation of our
results include the strong inequalities ��s�1, l2�n2−n1,
and l1�min�n1 ,n2−n1�. For 	=O�1�, all the assumptions
hold for ��1. For 0�	�1 �above but close to the bifur-
cation point of the birth of the fixed points n1 and n2 of Eq.
�1�� the criterion is more stringent: �	3�1.

In conclusion, by using a simple birth-death process as an
example, we have developed a systematic theory of unlim-
ited population growth driven by demographic noise. We
have found the complete metastable probability distribution
of the population at long times, Pn�t���ne−t/
, and the pre-
viously unknown important preexponential factor in the de-
cay time 
�e−��s. As �n has a power-law tail �n−2, no
distribution moments, except the zeroth one, exist. As a

result, the initial-value problem for the master equation �2�
is highly singular. When starting from a well-behaved
Pn�t=0�, all of the distribution moments, except the zeroth
one, diverge already at t�0.

A general outcome of this work is that slow WKB modes
should play an important role, along with fast WKB modes,
in population escape problems. Consider, as an example, the
Schlögl model �12� where, in addition to our three reactions,

one also has 3A→
�

2A. For very small � the rate equation has
an additional attracting point n3�n2. Here the stochastic
population switches randomly between two metastable states
peaked at n1 and n3. Now, if Pn�t=0� is located around n
=n1, there is an exponentially long intermediate regime when
the probability flux is directed from n=n1 to n=n3, whereas
the reverse flux is negligible. This important regime is accu-
rately captured by the solution presented above. The slow-
mode component of the solution �which essentially describes
deterministic motion “down the hill”� is vital in determining
the preexponents of the QSD and of the decay time.
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